Weighted $L^2$ inequalities for square functions
نویسندگان
چکیده
منابع مشابه
Weighted Multidimensional Inequalities for Monotone Functions
Let + := {(x1, . . . , xN ) ; xi 0, i = 1, 2, . . . , N} and + := + . Assume that f : + → + is monotone which means that it is monotone with respect to each variable. We denote f ↓, when f is decreasing (= nonincreasing) and f ↑ when f is increasing (= nondecreasing). Throughout this paper ω, u, v are positive measurable functions defined on + , N 1. A function P on [0,∞) is called a modular fu...
متن کاملSufficient Inequalities for Univalent Functions
In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملOn Sharp Aperture-Weighted Estimates for Square Functions
Let Sα,ψ( f ) be the square function defined by means of the cone in R n+1 + of aperture α, and a standard kernel ψ . Let [w]Ap denote the Ap characteristic of the weight w. We show that for any 1 < p < ∞ and α ≥ 1, ‖Sα,ψ‖L p(w) αn[w] max ( 1 2 , 1 p−1 ) Ap . For each fixed α the dependence on [w]Ap is sharp. Also, on all class Ap the result is sharp in α. Previously this estimate was proved in...
متن کاملWeighted Markov–bernstein Inequalities for Entire Functions of Exponential Type
We prove weighted Markov–Bernstein inequalities of the form
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 2017
ISSN: 0002-9947,1088-6850
DOI: 10.1090/tran/7056